Description | In the Linux kernel, the following vulnerability has been resolved:
PCI: aardvark: Fix kernel panic during PIO transfer
Trying to start a new PIO transfer by writing value 0 in PIO_START register
when previous transfer has not yet completed (which is indicated by value 1
in PIO_START) causes an External Abort on CPU, which results in kernel
panic:
SError Interrupt on CPU0, code 0xbf000002 -- SError
Kernel panic - not syncing: Asynchronous SError Interrupt
To prevent kernel panic, it is required to reject a new PIO transfer when
previous one has not finished yet.
If previous PIO transfer is not finished yet, the kernel may issue a new
PIO request only if the previous PIO transfer timed out.
In the past the root cause of this issue was incorrectly identified (as it
often happens during link retraining or after link down event) and special
hack was implemented in Trusted Firmware to catch all SError events in EL3,
to ignore errors with code 0xbf000002 and not forwarding any other errors
to kernel and instead throw panic from EL3 Trusted Firmware handler.
Links to discussion and patches about this issue:
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=3c7dcdac5c50
https://lore.kernel.org/linux-pci/20190316161243.29517-1-repk@triplefau.lt/
https://lore.kernel.org/linux-pci/971be151d24312cc533989a64bd454b4@www.loen.fr/
https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/1541
But the real cause was the fact that during link retraining or after link
down event the PIO transfer may take longer time, up to the 1.44s until it
times out. This increased probability that a new PIO transfer would be
issued by kernel while previous one has not finished yet.
After applying this change into the kernel, it is possible to revert the
mentioned TF-A hack and SError events do not have to be caught in TF-A EL3. |